Producing a Reduced Row Echelon Form (RREF) Matrix Using the TI-83+

Step 1: Invoke the matrix editor, and enter the values that corresponding to the coefficients and constants for the system of linear equations. (If you are unsure how to enter a matrix, see one of the handouts for Cramer's Rule.) Let's assume you entered a matrix for a system of linear equations in three variables as matrix 5: [E].

When you are finished entering the matrix values, quit the matrix editor.

Step 2: Invoke the matrix editor again, and access the MATH menu:

2nd x⁻¹ ► MATH

Step 3: Scroll down to B: reff (and press ENTER to invoke the rref () feature. The screen will look like the following:

rref (

Step 4: Specify the name of the matrix that you want to produce in reduced row echelon form. (In our example, the matrix name is [E], which corresponds to number 5 on the NAMES menu):

The screen will look like the following:

rref ([E]

Close the parentheses and press ENTER:

rref ([E]) ENTER

The result will be a matrix similar to the following:

[[1	0	0	-2]
[0	1	0	12]
[0	0	1	5]]

Step 5: Interpret the results.

The value of the last element in the first row is the x-coordinate of the solution. The value of the last element in the second row is the y-coordinate of the solution. The value of the last element in the third row is the z-coordinate of the solution.

Step 6: Write the solution as an ordered triple (x, y, z). In this example, the solution is the ordered triple (-2, 12, 5).