Producing a Reduced Row Echelon Form (RREF) Matrix Using the TI-83+

Step 1: Invoke the matrix editor, and enter the values that corresponding to the coefficients and constants for the system of linear equations. (If you are unsure how to enter a matrix, see one of the handouts for Cramer's Rule.) Let's assume you entered a matrix for a system of linear equations in three variables as matrix 5: [E].

When you are finished entering the matrix values, quit the matrix editor.
Step 2: Invoke the matrix editor again, and access the MATH menu:
$2^{\text {nd }} x^{-1}-$ MATH
Step 3: Scroll down to B: reff (and press ENTER to invoke the rref () feature. The screen will look like the following:
rref (

Step 4: Specify the name of the matrix that you want to produce in reduced row echelon form. (In our example, the matrix name is [E], which corresponds to number 5 on the NAMES menu):
$2^{\text {nd }} x^{-1}$ NAMES 5
The screen will look like the following:
rref ([E]
Close the parentheses and press ENTER:
rref ([E]) ENTER
The result will be a matrix similar to the following:
$\left[\begin{array}{llll}{[1} & 0 & 0 & -2] \\ {[0} & 1 & 0 & 12] \\ {[0} & 0 & 1 & 5]\end{array}\right]$

Step 5: Interpret the results.
The value of the last element in the first row is the \boldsymbol{x}-coordinate of the solution. The value of the last element in the second row is the \boldsymbol{y}-coordinate of the solution. The value of the last element in the third row is the \boldsymbol{z}-coordinate of the solution.

Step 6: Write the solution as an ordered triple $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$. In this example, the solution is the ordered triple $(-2,12,5)$.

